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The approximation of problems of position control of parabolic systems by 

suitable bite-dime~ional control problems is discussed. The paper is closely 
related to the researches in [l-3). 

1. We consider a system whose state at each instant t of the interval [to, 61 

is characterized by a scalar function y (t, *) = y (t, 2) defined in a domain Q of 

the n-dimensional Euclidean space R”. The system is subject to controls r+ and 

us and to uncontrolled disturbances (interferences) v, and us. The system’s’ 

dynamics is defined by the relations 

aY(h 4 
=4(4s>+ &P, 4UlW - Cl@! 4e(t) + (J..V 

ma,t,<t<@ 

Here y, is a specified initial state of the system, r is the boundary of Q2, d / dv~ 

is the normal derivative and a~, a, bf, ct, f and oi are specified parameters; 

parameter or equals either zero or one as = 1 when or =: 0 and 0; > 0 
when 0; = 1. The quantities in (1.1) and, (1.2) are assumed to satisfy certain 

regularity conditions (for instance, those mentioned in C21. 
At each instant t the controls are constrained by ui (t) EPs (t) C Rri and the 

disturbances ni have the estimates Ui (t) E Oi(t) C firnit i = 1,2, where Pt (t) 

and @ (t)are convex closed sets in the ~orr~ponding spaces, equibo~ded and 
measurable in t E It,, #l.(~easurabi~ty and integrabi~~ are to be understood in 
the Lebesgue sense ). 

(1.1). 

For brevity we discuss only the encounter problem for system 
Results similar to those given below hold for the evasion problem (see [2,3-j). 

The encounter problem for system (1.1) is the following: under specified constraints 
on the Control resources and known estimates of interference intensities find a method 
for forming the controls ur 
n&t, $(t, -Jj, i = 1,2) 

and us on the feedback principle (r+ = 
w c would ensure that for any admissible realizations of hi h 

the interference the system (1.1) is led from the initial state onto a specified state set in 
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specified time periods in a way that the specified phase constraints are met during 
the control process. This problem was studied in [Z, 3f wherein its mathematical 
formalization was presented, the necessary and sufficient solvability conditions were 

found and a method, similar to the extremal aiming rule [I], for constructing the 

resolving controls was indicated. Let us recall certain concepts from [2), needed ior 
the subsequent presentation, We shall use the notation in [Z] without explanations, 
Let u (tr, tz,$!) be a rule associating with each triple(tI, ts, yfwhere tI E (to, 6), 

t, E (tr, 61 and y E L, (a), a pair (ur (t), us (t)} of functions u.r (s), and 
us (.) measurable on [tr, E&where u1 (t) E: PI (t)and uz (c) E Pz (t). Each 

such rule is called a strategy. 
to = ‘0 < ‘tl < . * 

By A we denote a partitioning of [t , ~1 by points 
. < %=(A) = 6, 6 (A) = maxi (ai+r - ~3. Let y [tla = 

Y ft; to, yo, u],, to < t < 6% be a motion of system (1.1) from position (t,, 3r,), 
corresponding to strategy U and partitioning A (see [2] ). Finally, let M and jj7 

be some sets in space It,, S] x L, (!J). The rigorous statement of the encounter 

problem is as follows. 

P I o b 1 e m 1. Construct a strategy U with the property: for any number 

&>O a number 6 > 0 can be found for which we have 

p ((t*, Y I&lJ, J+O = inf 
{t, h)EM 

(1 t, - t I” + Ii Y M, - b ll$“d tJ 

at some instant t* = t (y [ * IA) for each motion 
t, < t < @+with 6 (A) < 6 where 

y MA = y it; to, go, a, 

P c& Y WA), NJ \( E, &I < t < t* 

2. Let us discuss the possibility of approximating Problem 1 by suitable finite- 

dimensional position control problems. At first we associate a finite-dimensional 

controlled system of dimensionality k > 1 (k is an integer) with system (1.1). The 

state of the former system at each instant 1 E [to, 91 is characterized by the 

vector z(k) (t} = (zrf@ (t),. . . . . ., &(lrf (9) varying by the law 

&fk)j& = A@) ,fk) + B:k+.&l + By%, - C:k)V1 - c$s + fCk) (t) (2.1) 

Here Ui and Vi are controls constrained by ui (t) E Pi (1) and uj (t) E Qi (t), 

i = 1, 2; the matrices in (2.1) have the form 

hck) = diae; {?Q,. . ., ?bkj 

f(k) (t) = CO1 ((f (t, ‘), @,>62 ,. * ., <f (t, ‘)v @khf 

@,ti) (cik)) is a matrix of dimension k x ry (k X F&) with elements 

b;;’ = (bvj(t, a), oi)Qv (c;;’ =E (cvj(t, -), o&J 

Y = 1, 2, Ql=a, Qz=r 
where (hi, ~i} is a solution in ~1 (a) (see [4,5] ) of the spectral problem 

Aw= -kO, xER; CT aW+a,w=0, SEI? l av)i 
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In the space It,, 81 X Rk we associate the set 

IkP(N(Q) = {{t, 2) 1 t() < t \< 6, 

2 = hA ~J6-2, * ” *, (!I, wcw, it, !/I f!s Af uul 

with set M (N). We form the vector 

5(k) = {Q/o, @,h,. - ‘I (Yet ~kha)’ = D(“)Yo 
and for system (2.1) with initial state zck) (to) = z,,(k) we consider the problem of 

encounter with set Mck) in set’ Nck)(see (I]). Here it is convenient to restate 
this problem as follows. The strategy u(k) = U(k) (t,, tz, z) is a rule associating 

with every triple {$I, tsr Z}, 
{l2(;)t (;;( * )~do~;;rons 

t, E It,, 61, tz E (t,, Sl and z E B: a pair 
4 (t) and u2 (t) measurable on ftl, te), with values 

The motion Zfk) [tla =dk) [t; to, ZO(~), Uck)l, 
systei (2.1) from tie pckion {to, .&I(~)}, 

of 
corresponding to strategy U(k) and 

partitioning A, is defined as the absolutely continuous solution ~(~1 Ii!], to < t < 9, 

z(k) [t,J = z,(~), of~,(2.l)~th uj=ujkl andoj=z?j[t],&,<<< 
6, where the vj Et7 are some measurable functions with values in 01 (t) and on 

each half-open interval [ai, %+I) 

P r o b 1 e m I(@. Construct a strategy ucic) with the property: for any number 

E > 0 a number 6 > 0 can be found for which the condition 

P (Q*y 2 tk) [t*]J, Mfk’) = inf 
(t, ZhsM(k) 

(It, - t 1” + JJ dk) [&IA - 

2 Ickf”< 8 

is fulfilled at some instant t* = t (Z’kf [+ Jq) for each motion dk) [t]A = z(') 

It; to, .&J(k), U(k)J,, to < t < @Y with 6 (A) < 6 , where 

p ((t, zWtl*}, Nq < E, t, < t < t, 

Problemlfkf has been studied in [l] wherein necer+sary and sufficient 
solvability conditions were found for it and a method indicated for constructing the 

required controls; the case when the problem’s solution can be obtained in an 
effective manner was distinguished . Let us point out the connection between 
Problem 1 and l(k). 

T h e o r e m 2.1. Let sets M and N be closed in the metric 11 (t, Y} fla 
(see [Z, 31). Problem 1 is solvable if and only if Problem l(“)is solvable for any k r 
Let &7(k) be the strategy solving Problem i(k). We set U,tk) = UC’) (&, &, 

D(“)y), y E L, (52). Then for any number E > 0 a number k exists with the 
property: for any k > ko we can find a number 6 = 6 (k, 8) > 0 for which each 



634 

motion YitlA = y [t; to, Yo, Uhtk)la, iTo < t < 6 of system ( 1. l), corresponding 
to partitioning A with 6 (A) < 6, satisfies condition 

A. I. Korotkii and IL S. OSipOV 

P (it*, Y k&A), l+‘f) f e 

at some instant t* = t (y [ * 1s) 9 where 

p ({t, !/ [tlA}v N) < 8, to < t < t, 

The theorem’s proof relies on the theorems on the alternative for systems (1.1) 
and (2.1) (see [l, 21 ), on the properties of the motions of system (1.1) and on the 
connection between the stable sets of systems (1.1) and (2.1). 

3. Let us discuss the possibility of approximating Problem 1 by suitable finite- 
dimensional position control problems whose construction is based on the method of 

finite differences. For the sake of definiteness we restrict consideration to a step 

domain Q, and to an implicit difference scheme. We follow the notation in [S] and 

assume that the grid onQ(irregular, in general) matches the side faces of domain Q. 

We write the implicit scheme for (1.1) and (1.2) (see ~5,) as 

(y& = +j,’ + fk’, 1~ E Q2,, I = 1, . . . , m(A) (3.1) 

3Ygl 
~17 + czry; = (P;, k E I‘r,+ (3.2) 

yko = Y,,~, k E Q2, 
(3.3) 

Here 

If k = (k,,. . ., k,.. . ., kn) E I’,,+ lies on the right (left) side face rpf (r,-) 

orthogonal to axis Ox*, then, in(3.2) weset (y = (k,,. . . kp - 1,. . ., k,)) 

8Ykl 
7= 2 apjv (Y:)_xj (- 2 apjk(Y,‘)Xj) 

j=l j=l 

h, (k) 
%l 

1 

cpk’ zz 
(tz - ~z_~) h 04 s s &us - c2uz) dl‘ dt 

q-1 a+ 

h, @I 
Tl 

%i7 = (zz - %I_~) h(k) zz_l o_ s !I ’ VJau, - csuB) dI’ dt 
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if, however, it tums out that for some k e I’,,+ the function rPkt 
by several valnes, then in (3.2) we assume that the qk’ 

is specified 
for this k equals 

zero; o+(o-) is the right (left) face of o (y) (O (kr ,. . . , kp -I- 1,. . ., Icn)), 
orthogonal to axis oxP. 

C o n d i t i o n 1 (see [5-71 ), The estimate 

maxr ox+ h @I (Y,‘>s < C 
h 

holds, where C is a constant independent of the partitionings of f&,, 6 J and 52, 
as well as of the controls z&8 and uf. 

Let us rewrite scheme (3.1)-(3.2) as 

(E - D) $/kl = Yr’-’ + B (U, 1) - c {v, 1) + F 
I = 1,. . . m (A) 

(3.4) 

Here D is a linear self-adjoint nonpositive operator&flformed with respect to the 
coefficients A, 0, and a, , 

B (*, 0 V (*t 0) 

and the inverse to@-D&defined on H,exists; 
is a linear completely continuous operator constructed from the 

scheme’s coeffici~~ and defined on the set of ad~~ible controls 

with values in H; H is the space of grid functions definedon f&, (and equal to 
zero outside Q,) , provided with the norm 

With system (1.1) we associate a finite-dimensional discrete controlled system of 
dimensionality 1 i& 1. This system’s state at each instant zr of parttioning A is 

characterized by a vector ykl E H varying in accord with the recurrent law (3.4). 
In the space It,,, 61 X H we associate the set 

with set M (N). 
The problem of encounter with Mh inside Nh for system (3.4) is formulated as 

follows. Strategy u,, is a rule associating with every triple {rr , i$, Yk}, where 

t,Ez It,,+), tz E (01 and @k E H, a pair {ul (-1, ua (*)I of functions u1 (t) 
and Ua (t), measurable on [t,, 

of states (y;, .v:, * . . , 

tz), with values in P,(t) and P,(t). A collection 
y;(A) ) c N connected by the recurrence relation (3,4) 

is called a motion gtn [Zl, = yh IL; toy ykO, v,], 
(to, ?/k*)t 

of system (3.4) from position 
corr~pond~g to strategy Uh and parfftioning A ; at each [ai, a:+& 

n =k (*> , U, ( * )} E fJh (zg , Z;.H, &) and D = (S(@t % (t)) are some 
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measurable functions with values in vr (t) and Q, (t) , respectively. 

Problemlh. Construct a strategy u A with the property: for any number 

e>O we can find a number 6 = 6 (h, 8) > 0 for which the condition 

P(V*, Yh* V*lJ, M,,) = I* z;s (I r* - r I” + II yA* [t*]A- 2 llH31/’ < e 
h 

is fulfilled at some instant t, = t (gh I - JA) for each motion 
yi, Uh JA corresponding to a partitioning 

Yh [Zl* = y [I; t,, 
A with 6 (A) < 6, where, 

9 ((6 $ [tlh}, Nh) < 6, to < t < & 

Here yE [tlh is an interpolation, piecewise-linear in t, of YA [Z]A; 

for t E [T[, Tl+11 
thus, 

Without indicating the conditions under which Problem Ih is solvable, we 
state the basic result right away. Let G (V, i) = (2 E HI 2 = yh (Ti; ti+lt Yk7 u*, 

?I)&, u* E Uf, (Zi_1, ‘ci, yk), u ranges controls admissible on [T~_~, xi)) ~ If 
z E H, then by Z we mean an interpolation, piecewise-constant on Q ,of z 

(see [5] ). We note that every strategy U,, induces a strategy (rule ) u*, (a+~, ri, 

G+~, y, 2) (where ~i-~, ri, and ri+l are elements of partitioning A, y E 
L, (Q), z E H) by the law 

uli* (ri-13 fi9 %+I, YT Z)={U={U1(‘),U2(‘)}1UEUh(ZirZi+l,Z*) 

where zq is U.. element of G (v, i), for which E, is closest in 1) - lja to Y>. 
When i = 0 we at once set Z* = yg 

T h e o r e m 3.1.Let Condition 1 be fulfilled and let sets M and 1%’ satisfy the 

hypothesis of Theorem 2.1. If we can find a sequence of concentrated grids [5] on 
with respect to which Problem ‘lh is solvable, then Problem 1 is solvable. Let 

,“,*j’ x #‘) be a sequence of concentrated grids on it,, 61 X ‘d, connected by 

the limit passage 

6 (A(“) < min (6 (h(l), PI), . . . ,6 W”‘, I%)}, (3~ + 0 

and let v (P)be the strategy solving Problem 1 h(p). Then for any number e > 0 we 

can find ahnumber p. for which each motion y [iTI, = y [t; to, yo, U~CP)~~(~) 

with P > PO satisfies the condition 

ou. (l&7 Y kXlA(& M, < e 
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for some t, = t (Y [ * lAcp)) , where 

f’z (it, Y [tb) 1, N) < &, t, < t < t, 

The theorem’s proof relies on the theorem on the alternative for system (1. l), 
on the solvability theorem for Problem I,, and on the property that the solution 

of difference scheme (3.1)-(3.3) converges to the solution of problem (1.1) and (1.2). 

The results obtained can be used as a basis for the numerical realization of the 

desired control procedures on a computer. 

N o t e s 1”. The results obtained hold for more general parabolic systems and 

also for a number of other difference schemes (see [S] , for instance). 

2”. Using scheme (3.1)-(3.2) we can construct certain other special finite- 
dimensional systems (in general, no possessing the semi-group property with respect to 
t ) for which the alternative holds and which permit a decision to be made on the 

choice of the first player’s control in the original system (1.1) and in the intervals 
between partitionings A; a theorem analogous to Theorem 3.1 holds in connection 

with this. 

3”. Strategy u,,solving Problem Ih can be constructed as a strategy extremal 

to suitable sets from H. 
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