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The approximation of problems of position control of parabolic systems by
suitable finite-dimensional control problems is discussed, The paper is closely
related to the researches in [1-3].

1. We consider a system whose state at each instant ¢ of the interval [¢,, 9]
is characterized by a scalar functiony (£, +) = ¥ (¢, ) defined in a domain @ of
the n-dimensional Euclidean space R”, The system is subject to controls 3, and

u, and to uncontrolled disturbances (interferences) v, and p,. The system's’
dynamics is defined by the relations

% g""; D — Ay(t, 2) -+ by (1, 2) g (1) — 2 (¢, )01 (8) + (1.1)
fit,zy zEQ, t<t L8
By (¢, x)

01—y T @)Y 2) = (D)0 (t) — ca(2) by (t); z =T,
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Yy, ) =y (), 2 Q (1.2
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Here y, is a specified initial state of the system, I' is the boundary of Q, 4/ gv,
is the normal derivative and a;;, @, by, ¢;, f and 0; are specified parameters;
parameter ¢, equals either zeroorone ¢, = { when 0, =0 and 0, > 0
when @, = {1, The quantities in (1, 1) and (1, 2) are assumed to satisfy certain
regularity conditions (for instance, those mentioned in [2].

At each instant ¢ the controls are constrained by u; (8) €P; (t) C R and the
disturbances v; have the estimates v; (¢) & Q;(t) C R™, i = 1,2, where P; (f)
and Q; () are convex closed sets in the corresponding  spaces, equibounded and
measurable in # & [£,, ©).(Measurability and integrability are to be understood in
the Lebesgue sense ), For brevity we discuss only the encounter problem for system
(1.1). Results similar to those given below hold for the evasion problem (see [2,3]).

The encounter problem for system (1, 1) is the following: under specified constraints
on the control resources and known estimates of interference intensities find a method
for forming the controls u; and u, on the feedback principle (u; =
ult, ylt, -1, i = 1,2) which would ensure that for any admissible realizations of
the interference the system (1, 1) is led from the initial state onto a specified state set in
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specified time periods in a way that the specified phase constraints are met during

the control process. This problem was studied in [2, 3] wherein its mathematical
formalization was presented, the necessary and sufficient solvability conditions were
found and a method, similar to the extremal aiming rule [1], for constructing the
resolving controls was indicated. Let us recall certain concepts from [2], needed for
the subsequent presentation, We shall use the notation in [2] without explanations,
Let U (41, £2,¥) be a rule associating with each triple {#;, #,, y}where t; & [z, 9),
t, = (1, 8] and y & Ly (Q), a pair {uy (£), u, (t)} of functions u, (-),and

u, (-) measurable on f¢,, t,)where u; (t) & P, (t)and u, (t) & P, (¢). Each
such rule is called a strategy, By A we denote a partitioning of [z, ¢] by points

o =T <7y <...<Tma =%, §(8) =max; (tiyy — 1;). Lety [t]la =
y [t; to, ¥, Ula, ty <<t <05 be a motion of system (1, 1) from position {¢,, Yo},
comesponding to strategy [/ and partitioning A (see [2]), Finally, let M and N
be some sets in space [¢#,, @] X L, (). The rigorous statement of the encounter
problem is as follows,

Problem 1, Construct a strategy [J with the property: for any number
€ >0 anumber § > (0 canbe found for which we have

P({tss yltslh M) = inf (t,—t P+ [yl — RIR™"<e
it, hleM

at some instant 2, = ¢ (y [-]A) for each motion y [t]y = y It; Lo, Yoo Ula,
ty <<t < Gywith 8 (A) T8 where

p ({t3 ¥ {t]ﬁh N) e LIS,

2. Let us discuss the possibility of approximating Problem 1 by suitable finite-
dimensional position control problems, At first we associate a finite-dimensional
controlled system of dimensionality & >> { (kis an integer) with system (1,1)., The
state of the former system at each instant ¢ & [#,, ¥] is characterized by the
vector z®) (£) = {2z, (2),. . . ..., ™ (1)}’ varying by the law

dz2®fdt = AW z® 1 BPuy 1+ BPuy — vy — v, + 1P (1)

Here u; and v; are controls constrained by u; () & P; (t) and v; (t) & Q; (1),
i =1, 2; the matrices in (2, 1) have the form

(2. 1)

A® = diag {My,. < .y Ay}
f® () = col {Kf(t, *), o a,. . S 0) Ora}
B (€M is a matrix of dimension k xry(k X my) with elements
b = buj(t, -), @idg (¢ = <evi(t, +), @idg,)

v=1,2, ¢ =, Q=T
where {A;, ©;} is a solution in  H' (Q) (see [4,5]) of the spectral problem

Ao = —ho, 2EQ; O1pm t o =0, z=T
A
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In the space [¢,, 8] X R we associate the set

M®(NE) = {{t, z}[t, <t <9,
z == {(y’ (01>Q, LEEAEY) <!/, (‘)k>ﬂ},7{ts y} e M(N)}

with set M (N), We form the vector

zo(k) = {(yO’ (01>Q,. ey <y07 mk>ﬂ}, = D(k)yo

and for system (2, 1) with initial state z(® (¢,) = 2,® we consider the problem of
encounter with set M inset N()(see [1]). Here it is convenient to restate

this problem as follows, The strategy U®) = U® (t;, t,, 2) is a rle associating
with every triple {t;, fa, 2}, & & [t,, #), ¢, = (8, #] and z & R} a pair
{ui(+), uo(+)} of functions ¥, (?) and u, (¢) measurable on {#,, £,), with values

in P, (f) and P, (f).  The motion 2(® [t]a =z [¢t; £y, 20, U®])y  of
system (2, 1) from the position {2y, 20®}, corresponding to strategy U(F) and
partitioning A, is defined as the absolutely continuous solution z® [t], £, <t <O,
28 [t] = 208, of Eq, (2,1) with u; = u; [t] and v; =v; [t], £, <t K
§, where the v; [¢] are some measurable functions with valuesin Q; (f)  and on
each half-open interval [T, Ti+1)

{ul [']1 2] [ ’]} &= U(k) (Tif Tis1s Z(k) [ri]A)

Problem 7 Construct a strategy {/(%) with the property: for any number
¢ >0 anumber § > () can be found for which the condition
. 3
o ({fs z® [t*]A}f M(k)) = inf k)(‘ te —t[*+ | 2 )[t*]A -

1t, 2yeM{
2l <e

is fulfilled at some instant fx = ¢ (2% [’]A) for each motion 2% [tla
[t; ty, 2™, UPls, 3 SECH, with 6 (A) < 8, where

p({t, z®Itha}, N®)y<e, 1, <<E<ty

Problem1(® has been studied in [1] wherein necesssary and sufficient
solvability conditions were found for it and a method indicated for constructing the
required controls; the case when the problem’s solution can be obtained in an
effective manner was distinguished . Let us point out the connection between
Problem 1 and {(¥),

= gk}

Theorem 2,1. Letsets Mand N be closed in the metric || {&, ¥} [«
(see [2,3]). Problem 1 is solvable if and only if Problem 4 is solvable for any k .
Let [J()be the strategy solving Problem {0, Weset U,® = U® (3, t,,
D®y), y € Ly (R). Then for any number & >0 a number % exists with the
property: for any k > kowe can find a number § = 8§ (k, €) > 0 for which each
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motion y[ﬂA =y [t; to, Yoo Us®la, £, < £ < ¥ of system (1.1), corresponding
to partitioning A with 8 (A) <C §, satisfies condition

0 ({te, y [8]a), M) e

at some instant £, = ¢ (¥ [-]a) 4 where

p ({t7 y[t]A}v N) < g, t0< t< t*

The theorem's proof relies on the theorems on the alternative for systems (1, 1)
and (2, 1) (see [1, 2] ), on the properties of the motions of system (1. 1) and on the
connection between the stable sets of systems (1. 1) and (2, 1).

3. Let us discuss the possibility of approximating Problem 1 by suitable finite-
dimensional position control problems whose construction is based on the method of
finite differences. For the sake of definiteness we restrict consideration to a step
domain Q and to an implicit difference scheme, We follow the notation in [5] and
assume that the grid onQ(irregular, in general) matches the side faces of domain Q.
We write the implicit scheme for (1. 1) and (1, 2) (see [5]) as

W= N f BEQ,  T=1,...m(@) &5
0y, ! ! + 3.2
015y T O =@, EETD, .
yko = Yo’ ke Qp e
Here
n
NI
= i j2|=1 (a',;jk (yk )X]-) xi'\" akykl
1 .
Yor = 70 S Yo &z
o (k)
Y
1
fkl — m g g (blbh — vy +f) dx dt
oy © )
¥ k=(ky .., kp..., k)& Typ* lies on the right (left) side face Iyt ()
orthogonal to axis Oz, then, in (3,2) we set (y = (ky,. . . p —1h o k)
oy, ! -~ .
e Zapiv )z, (_ Zam"‘(ykl)xj>
j=1 . =1
by (k)

S S (Batta — cqvg) AT dt
l

P T T —r,_,)h(k)

hy (k) >
(o' = =2 i} 5 (byty — caa) AT dt
-1
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if, however, it tums out that for some % I,  the function (Ptct is specified
by several values, then in (3, 2) we assume that the @k’ for this % equals
zero; ©*(w”) is the right (left) face of © (v) (0 (ky,. . ., Kp +1,. .., &),
orthogonal to axis Oz,.

Condition 1 (see[5-7]), The estimate
max; X h(k)(y )P < C
&+

holds, where C is a constant independent of the partitionings of [f,, #] and Q,
as well as of the controls u; and - v;.
Let us rewrite scheme (3. 1)~(3. 2) as
1 __ l“l (3. 4)
(E—D) y' =y +B@w, ) —C{v, h) + F
I=1,... m(A)

Here D is a linear self-adjoint nonpositive operator />H formed with respect to the
coefficients A, 0, and 0, , and the inverse to(E~D)defined on H,exists;

B (-, ) (C(-, 1) isa linear completely continuous operator constructed from the
scheme's coefficients and defined on the set of admissible controls

u={w(t), u, )} 0= ), O, a2 <t

with values in H; H is the space of grid functions defined on Q, (and equal to
zero outside Q;) , provided with the norm

I8 = (S w7)"

With system (1, 1) we associate a finite~dimensional discrete controlled system of
dimensionality |Qp|. This system's state at each instant Tt of parttioning A s
characterized by a vector ykl € H varying in accord with the recurrent law (3. 4),
In the space {¢,, 8] X H we associate the set

My (V) = {{t, 36 <t <8, 4, = 0 § ydz, kEQu (v} M (W)}
o (k)

with set M (N),

The problem of encounter with Af), inside N, for system (3, 4) is formulated as
follows, Strategy U, is a rule associating with every triple {f;, Iy, ¥k}, where
te= [y, 9), 4, & (4,8] and y, & H, a pair {u, (+), uy (+)} of functions u, (¢)
and Uy (¢} measurable on [t,, £,), with values in Py(f) and P,(¢). A collection
of states {yx, ¥i,..., yx' }C H connected by the recurrence relation (3.4)
is called a2 motion y, [/, = yn L2 ¢, S, U,l, of system (3, 4) from position
{te» ¥x’},  corresponding to strategy [/, and partitioning A ; at each [t;, Tis)a

u={u (), v (-)}y = Uy (vs, Tia, !I?s) and v = {1t} v v} are some
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measurable functions with values in @, (¢) and Q, \f) , respectively.

Problemly. Construct a strategy Upn  with the property; for any number
e >0 we can find a number § = 8 (2, €) > 0 for which the condition
Ot " ltalsh Mi) = I (1 — 2 4 [y, * [1,),— 2 1297 < e

is fulfilled at some instant t, = ¢ (y,, [ -Ja) for each motion y, [lla = y [1; ¢,,
yk, U]a corresponding to a partitioning A with § (A) < §, where,

o ({t, vx [}, Ny <o, £ <ty

Here y',': [t]a is an interpolation, piecewise-linear int, of yp [{]a; thus,
for e (R

¥* U, = 9 mAT + Y [+ “”‘-’-117

Without indicating the conditions under which Problem 1h is solvable, we
state the basic result right away, Let G (v, i) = {z <= H|z = yh (vi5 Tivrs Y, u¥,
V)a, u* & Up (viy, 1, ), U ranges controls admissible on [v,,, 7;)}. If
z & H, thenby Z we mean an interpolation, piecewise-constant on Q,of z
(see [5] ). We note that every strategy U/, induces a strategy (rule ) U’ (Tic1, Ty,
Tivl, Y, 2) (where T;—y, T;, and 7;4;  are elements of partitioning A, y &
L, (Q),z e H) by the law

Ur* (Ticrs Tiy Tiny ¥5 2) = {u = {1 (+), ()} u & Un (i, Tiag, 2,)

where z, is «. element of & (v, z), for which Z, is closestin || - |l to ¥}.
When i = () we at once set 24 = yk

Theorem 3.1,Let Condition 1 be fulfilied and let sets M and /V satisfy the
hypothesis of Theorem 2,1, If we can find a sequence of concentrated grids [5] on
Q , with respect to which Problem 1n is solvable, then Problem 1 is solvable, Let
A® x QfP be a sequence of concentrated grids on {t,, ¥] X Q, connected by
the limit passage

—1fy n — 8
87 <m%x B (k) ) hil(k)) <const, 0<y<Ci
=1
8 (A®) < min {8 (Y, B), ..., 8(A7, )}, Bp—0
and let U (p)be the strategy solving Problem 1 ., Then for any number € > 0 we

can find a number P, for which each motion ¥y [t]A(p) =y t; ty, Yo, Un®lyp)
with p > p, satisfies the condition

Pa ({t*, Y [t*]A(P)}7 M) < €
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forsome t, =t (y[-1,p) , where

Pz ({t7 Y [t]A(p) }7 N) < e, 1 < ¢ < t*

The theorem's proof relies on the theorem on the altemative for system (1, 1),
on the solvability theorem for Problem 1, and on the property that the solution
of difference scheme (3. 1)-(3. 3) converges to the solution of problem (1, 1) and (1. 2).
The results obtained can be used as a basis for the numerical realization of the
desired control procedures on a computer,

Notes 1°. The results obtained hold for more general parabolic systems and
also for a number of other difference schemes (see [5] , for instance),

2°, Using scheme (3. 1)-(3.2) we can construct certain other special finite-
dimensional systems (in general, no possessing the semi-group property with respectto
t ) for which the altemnative holds and which permit a decision to be made on the
choice of the first player's control in the original system (1. 1) and in the intervals
between partitionings A; a theorem analogous to Theorem 3, 1 holds in connection
with this,

3°, Strategy U,solving Problem 4p can be constructed as a strategy extremal
to suitable sets from H,
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